Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biapenem as a Novel Insight into Drug Repositioning against Particulate Matter-Induced Lung Injury.

Identifieur interne : 000204 ( Main/Exploration ); précédent : 000203; suivant : 000205

Biapenem as a Novel Insight into Drug Repositioning against Particulate Matter-Induced Lung Injury.

Auteurs : Wonhwa Lee [Corée du Sud] ; Moon-Chang Baek [Corée du Sud] ; Kyung-Min Kim [Corée du Sud] ; Jong-Sup Bae [Corée du Sud]

Source :

RBID : pubmed:32098061

Descripteurs français

English descriptors

Abstract

The screening of biologically active chemical compound libraries can be an efficient way to reposition Food and Drug Adminstration (FDA)-approved drugs or to discover new therapies for human diseases. Particulate matter with an aerodynamic diameter equal to or less than 2.5 μm (PM2.5) is a form of air pollutant that causes significant lung damage when inhaled. This study illustrates drug repositioning with biapenem (BIPM) for the modulation of PM-induced lung injury. Biapenem was used for the treatment of severe infections. Mice were treated with BIPM via tail-vein injection after the intratracheal instillation of PM2.5. Alterations in the lung wet/dry weight, total protein/total cell count and lymphocyte count, inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were monitored in the PM2.5-treated mice. BIPM effectively reduced the pathological lung injury, lung wet/dry weight ratio, and hyperpermeability caused by PM2.5. Enhanced myeloperoxidase (MPO) activity by PM2.5 in the pulmonary tissue was inhibited by BIPM. Moreover, increased levels of inflammatory cytokines and total protein by PM2.5 in the BALF were also decreased by BIPM treatment. In addition, BIPM markedly suppressed PM2.5-induced increases in the number of lymphocytes in the BALF. Additionally, the activity of mammalian target of rapamycin (mTOR) was increased by BIPM. Administration of PM2.5 increased the expression levels of toll-like receptor 4 (TLR4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1, which were suppressed by BIPM. In conclusion, these findings indicate that BIPM has a critical anti-inflammatory effect due to its ability to regulate both the TLR4-MyD88 and mTOR-autophagy pathways, and may thus be a potential therapeutic agent against diesel PM2.5-induced pulmonary injury.

DOI: 10.3390/ijms21041462
PubMed: 32098061
PubMed Central: PMC7073049


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biapenem as a Novel Insight into Drug Repositioning against Particulate Matter-Induced Lung Injury.</title>
<author>
<name sortKey="Lee, Wonhwa" sort="Lee, Wonhwa" uniqKey="Lee W" first="Wonhwa" last="Lee">Wonhwa Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baek, Moon Chang" sort="Baek, Moon Chang" uniqKey="Baek M" first="Moon-Chang" last="Baek">Moon-Chang Baek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kyung Min" sort="Kim, Kyung Min" uniqKey="Kim K" first="Kyung-Min" last="Kim">Kyung-Min Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bae, Jong Sup" sort="Bae, Jong Sup" uniqKey="Bae J" first="Jong-Sup" last="Bae">Jong-Sup Bae</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32098061</idno>
<idno type="pmid">32098061</idno>
<idno type="doi">10.3390/ijms21041462</idno>
<idno type="pmc">PMC7073049</idno>
<idno type="wicri:Area/Main/Corpus">000205</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000205</idno>
<idno type="wicri:Area/Main/Curation">000205</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000205</idno>
<idno type="wicri:Area/Main/Exploration">000205</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biapenem as a Novel Insight into Drug Repositioning against Particulate Matter-Induced Lung Injury.</title>
<author>
<name sortKey="Lee, Wonhwa" sort="Lee, Wonhwa" uniqKey="Lee W" first="Wonhwa" last="Lee">Wonhwa Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baek, Moon Chang" sort="Baek, Moon Chang" uniqKey="Baek M" first="Moon-Chang" last="Baek">Moon-Chang Baek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kyung Min" sort="Kim, Kyung Min" uniqKey="Kim K" first="Kyung-Min" last="Kim">Kyung-Min Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bae, Jong Sup" sort="Bae, Jong Sup" uniqKey="Bae J" first="Jong-Sup" last="Bae">Jong-Sup Bae</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Beclin-1 (immunology)</term>
<term>Bronchoalveolar Lavage (MeSH)</term>
<term>Cytokines (immunology)</term>
<term>Drug Repositioning (MeSH)</term>
<term>Lung (immunology)</term>
<term>Lung (pathology)</term>
<term>Lung Injury (chemically induced)</term>
<term>Lung Injury (drug therapy)</term>
<term>Lung Injury (immunology)</term>
<term>Lung Injury (pathology)</term>
<term>Lymphocytes (immunology)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred BALB C (MeSH)</term>
<term>Microtubule-Associated Proteins (immunology)</term>
<term>Myeloid Differentiation Factor 88 (immunology)</term>
<term>Particulate Matter (toxicity)</term>
<term>TOR Serine-Threonine Kinases (immunology)</term>
<term>Thienamycins (pharmacology)</term>
<term>Toll-Like Receptor 4 (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bécline-1 (immunologie)</term>
<term>Cytokines (immunologie)</term>
<term>Facteur de différenciation myéloïde-88 (immunologie)</term>
<term>Lavage bronchoalvéolaire (MeSH)</term>
<term>Lymphocytes (immunologie)</term>
<term>Lésion pulmonaire (anatomopathologie)</term>
<term>Lésion pulmonaire (immunologie)</term>
<term>Lésion pulmonaire (induit chimiquement)</term>
<term>Lésion pulmonaire (traitement médicamenteux)</term>
<term>Matière particulaire (toxicité)</term>
<term>Mâle (MeSH)</term>
<term>Poumon (anatomopathologie)</term>
<term>Poumon (immunologie)</term>
<term>Protéines associées aux microtubules (immunologie)</term>
<term>Repositionnement des médicaments (MeSH)</term>
<term>Récepteur de type Toll-4 (immunologie)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée BALB C (MeSH)</term>
<term>Sérine-thréonine kinases TOR (immunologie)</term>
<term>Thiénamycine (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Beclin-1</term>
<term>Cytokines</term>
<term>Microtubule-Associated Proteins</term>
<term>Myeloid Differentiation Factor 88</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Toll-Like Receptor 4</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Lésion pulmonaire</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Lung Injury</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Lung Injury</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Bécline-1</term>
<term>Cytokines</term>
<term>Facteur de différenciation myéloïde-88</term>
<term>Lymphocytes</term>
<term>Lésion pulmonaire</term>
<term>Poumon</term>
<term>Protéines associées aux microtubules</term>
<term>Récepteur de type Toll-4</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Lung</term>
<term>Lung Injury</term>
<term>Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="induit chimiquement" xml:lang="fr">
<term>Lésion pulmonaire</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
<term>Lung Injury</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Thiénamycine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Thienamycins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Particulate Matter</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Matière particulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Lésion pulmonaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Bronchoalveolar Lavage</term>
<term>Drug Repositioning</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Lavage bronchoalvéolaire</term>
<term>Mâle</term>
<term>Repositionnement des médicaments</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The screening of biologically active chemical compound libraries can be an efficient way to reposition Food and Drug Adminstration (FDA)-approved drugs or to discover new therapies for human diseases. Particulate matter with an aerodynamic diameter equal to or less than 2.5 μm (PM
<sub>2.5</sub>
) is a form of air pollutant that causes significant lung damage when inhaled. This study illustrates drug repositioning with biapenem (BIPM) for the modulation of PM-induced lung injury. Biapenem was used for the treatment of severe infections. Mice were treated with BIPM via tail-vein injection after the intratracheal instillation of PM
<sub>2.5</sub>
. Alterations in the lung wet/dry weight, total protein/total cell count and lymphocyte count, inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were monitored in the PM
<sub>2.5</sub>
-treated mice. BIPM effectively reduced the pathological lung injury, lung wet/dry weight ratio, and hyperpermeability caused by PM
<sub>2.5</sub>
. Enhanced myeloperoxidase (MPO) activity by PM
<sub>2.5</sub>
in the pulmonary tissue was inhibited by BIPM. Moreover, increased levels of inflammatory cytokines and total protein by PM
<sub>2.5</sub>
in the BALF were also decreased by BIPM treatment. In addition, BIPM markedly suppressed PM
<sub>2.5</sub>
-induced increases in the number of lymphocytes in the BALF. Additionally, the activity of mammalian target of rapamycin (mTOR) was increased by BIPM. Administration of PM
<sub>2.5</sub>
increased the expression levels of toll-like receptor 4 (TLR4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1, which were suppressed by BIPM. In conclusion, these findings indicate that BIPM has a critical anti-inflammatory effect due to its ability to regulate both the TLR4-MyD88 and mTOR-autophagy pathways, and may thus be a potential therapeutic agent against diesel PM
<sub>2.5</sub>
-induced pulmonary injury.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32098061</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>Feb</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Biapenem as a Novel Insight into Drug Repositioning against Particulate Matter-Induced Lung Injury.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1462</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms21041462</ELocationID>
<Abstract>
<AbstractText>The screening of biologically active chemical compound libraries can be an efficient way to reposition Food and Drug Adminstration (FDA)-approved drugs or to discover new therapies for human diseases. Particulate matter with an aerodynamic diameter equal to or less than 2.5 μm (PM
<sub>2.5</sub>
) is a form of air pollutant that causes significant lung damage when inhaled. This study illustrates drug repositioning with biapenem (BIPM) for the modulation of PM-induced lung injury. Biapenem was used for the treatment of severe infections. Mice were treated with BIPM via tail-vein injection after the intratracheal instillation of PM
<sub>2.5</sub>
. Alterations in the lung wet/dry weight, total protein/total cell count and lymphocyte count, inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were monitored in the PM
<sub>2.5</sub>
-treated mice. BIPM effectively reduced the pathological lung injury, lung wet/dry weight ratio, and hyperpermeability caused by PM
<sub>2.5</sub>
. Enhanced myeloperoxidase (MPO) activity by PM
<sub>2.5</sub>
in the pulmonary tissue was inhibited by BIPM. Moreover, increased levels of inflammatory cytokines and total protein by PM
<sub>2.5</sub>
in the BALF were also decreased by BIPM treatment. In addition, BIPM markedly suppressed PM
<sub>2.5</sub>
-induced increases in the number of lymphocytes in the BALF. Additionally, the activity of mammalian target of rapamycin (mTOR) was increased by BIPM. Administration of PM
<sub>2.5</sub>
increased the expression levels of toll-like receptor 4 (TLR4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1, which were suppressed by BIPM. In conclusion, these findings indicate that BIPM has a critical anti-inflammatory effect due to its ability to regulate both the TLR4-MyD88 and mTOR-autophagy pathways, and may thus be a potential therapeutic agent against diesel PM
<sub>2.5</sub>
-induced pulmonary injury.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Wonhwa</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baek</LastName>
<ForeName>Moon-Chang</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41566, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Kyung-Min</ForeName>
<Initials>KM</Initials>
<Identifier Source="ORCID">0000-0003-4812-6297</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bae</LastName>
<ForeName>Jong-Sup</ForeName>
<Initials>JS</Initials>
<Identifier Source="ORCID">0000-0002-5756-9367</Identifier>
<AffiliationInfo>
<Affiliation>College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HI15C0001</GrantID>
<Agency>a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2017M3A9G8083382</GrantID>
<Agency>by the National Research Foundation of Korea (NRF) grant funded by the Korean government</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071186">Beclin-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C115010">Becn1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C480860">MAP1LC3 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C507780">Myd88 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053594">Myeloid Differentiation Factor 88</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D052638">Particulate Matter</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013845">Thienamycins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C493487">Tlr4 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051197">Toll-Like Receptor 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546843">mTOR protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YR5U3L9ZH1</RegistryNumber>
<NameOfSubstance UI="C065257">biapenem</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071186" MajorTopicYN="N">Beclin-1</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018893" MajorTopicYN="N">Bronchoalveolar Lavage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058492" MajorTopicYN="Y">Drug Repositioning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="Y">Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055370" MajorTopicYN="Y">Lung Injury</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008214" MajorTopicYN="N">Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053594" MajorTopicYN="N">Myeloid Differentiation Factor 88</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052638" MajorTopicYN="N">Particulate Matter</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013845" MajorTopicYN="N">Thienamycins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051197" MajorTopicYN="N">Toll-Like Receptor 4</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">TLR4-mTOR-autophagy</Keyword>
<Keyword MajorTopicYN="N">biapenem</Keyword>
<Keyword MajorTopicYN="N">drug repositioning</Keyword>
<Keyword MajorTopicYN="N">lung injury</Keyword>
<Keyword MajorTopicYN="N">particulate matter</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32098061</ArticleId>
<ArticleId IdType="pii">ijms21041462</ArticleId>
<ArticleId IdType="doi">10.3390/ijms21041462</ArticleId>
<ArticleId IdType="pmc">PMC7073049</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Toxicol Lett. 2017 Apr 5;271:26-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28245985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016 Dec;12(12):2286-2299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27658023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol Environ Health A. 2019;82(12):727-740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31342870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Oct 18;6:35482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27752103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2019 Apr 15;170:620-626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30579162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Nov 15;183(10):6244-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19890065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Chin Med. 2019;47(1):119-133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30630344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2003 Oct 8;290(14):1859-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2008 Feb 2;580(1-2):262-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18021768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Chron Obstruct Pulmon Dis. 2009;4:233-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19554194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2004 Aug;3(8):673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2015 Sep;99:185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26117428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Med Res. 2013 Dec;138(6):995-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24521647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Chemother. 2012 Aug;18(4):472-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22215228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytomedicine. 2019 Sep;62:152939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31100678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Ther Med. 2019 Oct;18(4):2503-2511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31572502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Radiol. 2006 May;58(2):266-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16427755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Part Fibre Toxicol. 2018 Jan 12;15(1):4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29329563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2006 Jan;384(2):438-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16333601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2018 Jun;237:592-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29525626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 19;5:9287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25787015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2015 Aug;20(8):1027-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25975957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2018 Jul;164:585-596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29626820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2019 Feb;124:45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30496780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Postgrad Med. 2011 Apr-Jun;57(2):153-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21654146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2010 Apr;42(4):442-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shock. 2003 Apr;19(4):366-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12688549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Transl Med. 2018 Jan;6(2):32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29430449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pulm Circ. 2017 Jul-Sep;7(3):617-623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28644070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2017 Apr 14;14(1):84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28410596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Thorac Dis. 2017 Nov;9(11):4398-4412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29268509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2014 Sep;16(9):727-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25084494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2018 Feb;94:7-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29241031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2013 May;18(9-10):495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23340113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Basic Res Cardiol. 2009 Jan;104(1):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2015 Jan;119:675-681</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25150970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2016 Nov;16(11):661-675</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27694913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2016 Sep;216:380-390</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27341017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1991 May;143(5 Pt 1):1044-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2024813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chemother. 2016;28(1):28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25407221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Feb 14;368(7):651-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23406030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2018 Dec;25(34):33901-33910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30284710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inhal Toxicol. 2005 Mar;17(3):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Food. 2019 Jan;22(1):57-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30160593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jan 09;7:40030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28067267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 2012 Nov;142(5):1289-1299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23131937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Lee, Wonhwa" sort="Lee, Wonhwa" uniqKey="Lee W" first="Wonhwa" last="Lee">Wonhwa Lee</name>
</noRegion>
<name sortKey="Bae, Jong Sup" sort="Bae, Jong Sup" uniqKey="Bae J" first="Jong-Sup" last="Bae">Jong-Sup Bae</name>
<name sortKey="Baek, Moon Chang" sort="Baek, Moon Chang" uniqKey="Baek M" first="Moon-Chang" last="Baek">Moon-Chang Baek</name>
<name sortKey="Kim, Kyung Min" sort="Kim, Kyung Min" uniqKey="Kim K" first="Kyung-Min" last="Kim">Kyung-Min Kim</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000204 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000204 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32098061
   |texte=   Biapenem as a Novel Insight into Drug Repositioning against Particulate Matter-Induced Lung Injury.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32098061" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020